Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}=a+b\sqrt{3}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}=a+b\sqrt{3}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)=a+b\sqrt{3}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}=a+b\sqrt{3}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}=a+b\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3=a+b\sqrt{3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}=a+b\sqrt{3}
Add 4 and 3 to get 7.
a+b\sqrt{3}=7+4\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=7+4\sqrt{3}-a
Subtract a from both sides.
\sqrt{3}b=-a+4\sqrt{3}+7
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+4\sqrt{3}+7\right)}{3}
Divide 4\sqrt{3}-a+7 by \sqrt{3}.