Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}+\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Rationalize the denominator of \frac{2-\sqrt{3}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\left(2+\sqrt{3}\right)^{2}+\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{3}\right)^{2}+\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{4-3}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Square 2. Square \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}+\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}
Multiply 2-\sqrt{3} and 2-\sqrt{3} to get \left(2-\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}
Square \sqrt{3}. Square 1.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}
Subtract 1 from 3 to get 2.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}+1\right)^{2}}{2}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{3+2\sqrt{3}+1}{2}
The square of \sqrt{3} is 3.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+\frac{4+2\sqrt{3}}{2}
Add 3 and 1 to get 4.
\left(2+\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+2+\sqrt{3}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(2-\sqrt{3}\right)^{2}+2+\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3+\left(2-\sqrt{3}\right)^{2}+2+\sqrt{3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\left(2-\sqrt{3}\right)^{2}+2+\sqrt{3}
Add 4 and 3 to get 7.
7+4\sqrt{3}+4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}+2+\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
7+4\sqrt{3}+4-4\sqrt{3}+3+2+\sqrt{3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+7-4\sqrt{3}+2+\sqrt{3}
Add 4 and 3 to get 7.
14+4\sqrt{3}-4\sqrt{3}+2+\sqrt{3}
Add 7 and 7 to get 14.
14+2+\sqrt{3}
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
16+\sqrt{3}
Add 14 and 2 to get 16.