Evaluate
-2\sqrt{3}-4\sqrt{2}\approx -9.120955865
Factor
2 {(-\sqrt{3} - 2 \sqrt{2})} = -9.120955865
Share
Copied to clipboard
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{1-\sqrt{2}} by multiplying numerator and denominator by 1+\sqrt{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Consider \left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{1-2}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Square 1. Square \sqrt{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{-1}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Subtract 2 from 1 to get -1.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Anything divided by -1 gives its opposite.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1-\sqrt{2}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
-\left(2+2\sqrt{2}+\sqrt{3}+\sqrt{3}\sqrt{2}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
Apply the distributive property by multiplying each term of 2+\sqrt{3} by each term of 1+\sqrt{2}.
-\left(2+2\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
To find the opposite of 2+2\sqrt{2}+\sqrt{3}+\sqrt{6}, find the opposite of each term.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+2-\sqrt{3}-2\sqrt{2}+\sqrt{3}\sqrt{2}
Apply the distributive property by multiplying each term of 1-\sqrt{2} by each term of 2-\sqrt{3}.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+2-\sqrt{3}-2\sqrt{2}+\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-2\sqrt{2}-\sqrt{3}-\sqrt{6}-\sqrt{3}-2\sqrt{2}+\sqrt{6}
Add -2 and 2 to get 0.
-2\sqrt{2}-2\sqrt{3}-\sqrt{6}-2\sqrt{2}+\sqrt{6}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
-4\sqrt{2}-2\sqrt{3}-\sqrt{6}+\sqrt{6}
Combine -2\sqrt{2} and -2\sqrt{2} to get -4\sqrt{2}.
-4\sqrt{2}-2\sqrt{3}
Combine -\sqrt{6} and \sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}