Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{1-\sqrt{2}} by multiplying numerator and denominator by 1+\sqrt{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Consider \left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{1-2}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Square 1. Square \sqrt{2}.
\frac{\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)}{-1}+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Subtract 2 from 1 to get -1.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{1-\sqrt{2}}{2+\sqrt{3}}
Anything divided by -1 gives its opposite.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1-\sqrt{2}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\frac{\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
-\left(2+\sqrt{3}\right)\left(1+\sqrt{2}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
-\left(2+2\sqrt{2}+\sqrt{3}+\sqrt{3}\sqrt{2}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
Apply the distributive property by multiplying each term of 2+\sqrt{3} by each term of 1+\sqrt{2}.
-\left(2+2\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+\left(1-\sqrt{2}\right)\left(2-\sqrt{3}\right)
To find the opposite of 2+2\sqrt{2}+\sqrt{3}+\sqrt{6}, find the opposite of each term.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+2-\sqrt{3}-2\sqrt{2}+\sqrt{3}\sqrt{2}
Apply the distributive property by multiplying each term of 1-\sqrt{2} by each term of 2-\sqrt{3}.
-2-2\sqrt{2}-\sqrt{3}-\sqrt{6}+2-\sqrt{3}-2\sqrt{2}+\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-2\sqrt{2}-\sqrt{3}-\sqrt{6}-\sqrt{3}-2\sqrt{2}+\sqrt{6}
Add -2 and 2 to get 0.
-2\sqrt{2}-2\sqrt{3}-\sqrt{6}-2\sqrt{2}+\sqrt{6}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
-4\sqrt{2}-2\sqrt{3}-\sqrt{6}+\sqrt{6}
Combine -2\sqrt{2} and -2\sqrt{2} to get -4\sqrt{2}.
-4\sqrt{2}-2\sqrt{3}
Combine -\sqrt{6} and \sqrt{6} to get 0.