Evaluate
\frac{\sqrt{3}+3\sqrt{15}+10\sqrt{5}-2}{4}\approx 8.427920155
Share
Copied to clipboard
\left(2+\sqrt{3}\right)\sqrt{5}+\frac{2-\sqrt{3}}{1+\sqrt{5}}
Divide 2+\sqrt{3} by \frac{1}{\sqrt{5}} by multiplying 2+\sqrt{3} by the reciprocal of \frac{1}{\sqrt{5}}.
2\sqrt{5}+\sqrt{3}\sqrt{5}+\frac{2-\sqrt{3}}{1+\sqrt{5}}
Use the distributive property to multiply 2+\sqrt{3} by \sqrt{5}.
2\sqrt{5}+\sqrt{15}+\frac{2-\sqrt{3}}{1+\sqrt{5}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{5}+\sqrt{15}+\frac{\left(2-\sqrt{3}\right)\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{1+\sqrt{5}} by multiplying numerator and denominator by 1-\sqrt{5}.
2\sqrt{5}+\sqrt{15}+\frac{\left(2-\sqrt{3}\right)\left(1-\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{5}+\sqrt{15}+\frac{\left(2-\sqrt{3}\right)\left(1-\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
2\sqrt{5}+\sqrt{15}+\frac{\left(2-\sqrt{3}\right)\left(1-\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
2\sqrt{5}+\sqrt{15}+\frac{2-2\sqrt{5}-\sqrt{3}+\sqrt{3}\sqrt{5}}{-4}
Apply the distributive property by multiplying each term of 2-\sqrt{3} by each term of 1-\sqrt{5}.
2\sqrt{5}+\sqrt{15}+\frac{2-2\sqrt{5}-\sqrt{3}+\sqrt{15}}{-4}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{5}+\sqrt{15}+\frac{-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}}{4}
Multiply both numerator and denominator by -1.
\frac{4\left(2\sqrt{5}+\sqrt{15}\right)}{4}+\frac{-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{5}+\sqrt{15} times \frac{4}{4}.
\frac{4\left(2\sqrt{5}+\sqrt{15}\right)-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}}{4}
Since \frac{4\left(2\sqrt{5}+\sqrt{15}\right)}{4} and \frac{-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}}{4} have the same denominator, add them by adding their numerators.
\frac{8\sqrt{5}+4\sqrt{15}-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}}{4}
Do the multiplications in 4\left(2\sqrt{5}+\sqrt{15}\right)-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}.
\frac{10\sqrt{5}+3\sqrt{15}-2+\sqrt{3}}{4}
Do the calculations in 8\sqrt{5}+4\sqrt{15}-2+2\sqrt{5}+\sqrt{3}-\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}