Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{2}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}
Rationalize the denominator of \frac{2+\sqrt{2}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{\left(2+\sqrt{2}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{2}\right)\left(1+\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{\left(2+\sqrt{2}\right)\left(1+\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{2+2\sqrt{3}+\sqrt{2}+\sqrt{2}\sqrt{3}}{-2}
Apply the distributive property by multiplying each term of 2+\sqrt{2} by each term of 1+\sqrt{3}.
\frac{2+2\sqrt{3}+\sqrt{2}+\sqrt{6}}{-2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{-2-2\sqrt{3}-\sqrt{2}-\sqrt{6}}{2}
Multiply both numerator and denominator by -1.