Evaluate
\frac{2\left(3x+2\right)}{\left(2-x\right)\left(x+1\right)}
Expand
-\frac{2\left(3x+2\right)}{\left(x-2\right)\left(x+1\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 2 + \frac { x } { x + 1 } } { 1 - \frac { x } { 2 } } =
Share
Copied to clipboard
\frac{\frac{2\left(x+1\right)}{x+1}+\frac{x}{x+1}}{1-\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{2\left(x+1\right)+x}{x+1}}{1-\frac{x}{2}}
Since \frac{2\left(x+1\right)}{x+1} and \frac{x}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+2+x}{x+1}}{1-\frac{x}{2}}
Do the multiplications in 2\left(x+1\right)+x.
\frac{\frac{3x+2}{x+1}}{1-\frac{x}{2}}
Combine like terms in 2x+2+x.
\frac{\frac{3x+2}{x+1}}{\frac{2}{2}-\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{3x+2}{x+1}}{\frac{2-x}{2}}
Since \frac{2}{2} and \frac{x}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3x+2\right)\times 2}{\left(x+1\right)\left(2-x\right)}
Divide \frac{3x+2}{x+1} by \frac{2-x}{2} by multiplying \frac{3x+2}{x+1} by the reciprocal of \frac{2-x}{2}.
\frac{6x+4}{\left(x+1\right)\left(2-x\right)}
Use the distributive property to multiply 3x+2 by 2.
\frac{6x+4}{2x-x^{2}+2-x}
Apply the distributive property by multiplying each term of x+1 by each term of 2-x.
\frac{6x+4}{x-x^{2}+2}
Combine 2x and -x to get x.
\frac{\frac{2\left(x+1\right)}{x+1}+\frac{x}{x+1}}{1-\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{2\left(x+1\right)+x}{x+1}}{1-\frac{x}{2}}
Since \frac{2\left(x+1\right)}{x+1} and \frac{x}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+2+x}{x+1}}{1-\frac{x}{2}}
Do the multiplications in 2\left(x+1\right)+x.
\frac{\frac{3x+2}{x+1}}{1-\frac{x}{2}}
Combine like terms in 2x+2+x.
\frac{\frac{3x+2}{x+1}}{\frac{2}{2}-\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{3x+2}{x+1}}{\frac{2-x}{2}}
Since \frac{2}{2} and \frac{x}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3x+2\right)\times 2}{\left(x+1\right)\left(2-x\right)}
Divide \frac{3x+2}{x+1} by \frac{2-x}{2} by multiplying \frac{3x+2}{x+1} by the reciprocal of \frac{2-x}{2}.
\frac{6x+4}{\left(x+1\right)\left(2-x\right)}
Use the distributive property to multiply 3x+2 by 2.
\frac{6x+4}{2x-x^{2}+2-x}
Apply the distributive property by multiplying each term of x+1 by each term of 2-x.
\frac{6x+4}{x-x^{2}+2}
Combine 2x and -x to get x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}