Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{8}{4}+\frac{5}{4}-\frac{5}{9}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{8+5}{4}-\frac{5}{9}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Since \frac{8}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{13}{4}-\frac{5}{9}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Add 8 and 5 to get 13.
\frac{\frac{117}{36}-\frac{20}{36}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Least common multiple of 4 and 9 is 36. Convert \frac{13}{4} and \frac{5}{9} to fractions with denominator 36.
\frac{\frac{117-20}{36}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Since \frac{117}{36} and \frac{20}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{97}{36}}{2\sqrt{2}-\frac{\sqrt{5}}{2}}
Subtract 20 from 117 to get 97.
\frac{\frac{97}{36}}{\frac{2\times 2\sqrt{2}}{2}-\frac{\sqrt{5}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{2} times \frac{2}{2}.
\frac{\frac{97}{36}}{\frac{2\times 2\sqrt{2}-\sqrt{5}}{2}}
Since \frac{2\times 2\sqrt{2}}{2} and \frac{\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{97}{36}}{\frac{4\sqrt{2}-\sqrt{5}}{2}}
Do the multiplications in 2\times 2\sqrt{2}-\sqrt{5}.
\frac{97\times 2}{36\left(4\sqrt{2}-\sqrt{5}\right)}
Divide \frac{97}{36} by \frac{4\sqrt{2}-\sqrt{5}}{2} by multiplying \frac{97}{36} by the reciprocal of \frac{4\sqrt{2}-\sqrt{5}}{2}.
\frac{97}{18\left(-\sqrt{5}+4\sqrt{2}\right)}
Cancel out 2 in both numerator and denominator.
\frac{97}{-18\sqrt{5}+72\sqrt{2}}
Use the distributive property to multiply 18 by -\sqrt{5}+4\sqrt{2}.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{\left(-18\sqrt{5}+72\sqrt{2}\right)\left(-18\sqrt{5}-72\sqrt{2}\right)}
Rationalize the denominator of \frac{97}{-18\sqrt{5}+72\sqrt{2}} by multiplying numerator and denominator by -18\sqrt{5}-72\sqrt{2}.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{\left(-18\sqrt{5}\right)^{2}-\left(72\sqrt{2}\right)^{2}}
Consider \left(-18\sqrt{5}+72\sqrt{2}\right)\left(-18\sqrt{5}-72\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{\left(-18\right)^{2}\left(\sqrt{5}\right)^{2}-\left(72\sqrt{2}\right)^{2}}
Expand \left(-18\sqrt{5}\right)^{2}.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{324\left(\sqrt{5}\right)^{2}-\left(72\sqrt{2}\right)^{2}}
Calculate -18 to the power of 2 and get 324.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{324\times 5-\left(72\sqrt{2}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{1620-\left(72\sqrt{2}\right)^{2}}
Multiply 324 and 5 to get 1620.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{1620-72^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(72\sqrt{2}\right)^{2}.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{1620-5184\left(\sqrt{2}\right)^{2}}
Calculate 72 to the power of 2 and get 5184.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{1620-5184\times 2}
The square of \sqrt{2} is 2.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{1620-10368}
Multiply 5184 and 2 to get 10368.
\frac{97\left(-18\sqrt{5}-72\sqrt{2}\right)}{-8748}
Subtract 10368 from 1620 to get -8748.
\frac{-1746\sqrt{5}-6984\sqrt{2}}{-8748}
Use the distributive property to multiply 97 by -18\sqrt{5}-72\sqrt{2}.