Verify
false
Share
Copied to clipboard
\frac{\frac{6}{3}+\frac{1}{3}}{2-\frac{1}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{6+1}{3}}{2-\frac{1}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{3}}{2-\frac{1}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Add 6 and 1 to get 7.
\frac{\frac{7}{3}}{\frac{6}{3}-\frac{1}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{7}{3}}{\frac{6-1}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{3}}{\frac{5}{3}}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Subtract 1 from 6 to get 5.
\frac{7}{3}\times \frac{3}{5}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Divide \frac{7}{3} by \frac{5}{3} by multiplying \frac{7}{3} by the reciprocal of \frac{5}{3}.
\frac{7\times 3}{3\times 5}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Multiply \frac{7}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{5}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}
Cancel out 3 in both numerator and denominator.
\frac{7}{5}=\frac{\frac{3}{6}+\frac{2}{6}}{\frac{1}{2}-\frac{1}{3}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{7}{5}=\frac{\frac{3+2}{6}}{\frac{1}{2}-\frac{1}{3}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{7}{5}=\frac{\frac{5}{6}}{\frac{1}{2}-\frac{1}{3}}
Add 3 and 2 to get 5.
\frac{7}{5}=\frac{\frac{5}{6}}{\frac{3}{6}-\frac{2}{6}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{7}{5}=\frac{\frac{5}{6}}{\frac{3-2}{6}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{5}=\frac{\frac{5}{6}}{\frac{1}{6}}
Subtract 2 from 3 to get 1.
\frac{7}{5}=\frac{5}{6}\times 6
Divide \frac{5}{6} by \frac{1}{6} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{6}.
\frac{7}{5}=5
Cancel out 6 and 6.
\frac{7}{5}=\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
\text{false}
Compare \frac{7}{5} and \frac{25}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}