Evaluate
\frac{995}{244}\approx 4.077868852
Factor
\frac{5 \cdot 199}{2 ^ {2} \cdot 61} = 4\frac{19}{244} = 4.077868852459017
Share
Copied to clipboard
\begin{array}{l}\phantom{488)}\phantom{1}\\488\overline{)1990}\\\end{array}
Use the 1^{st} digit 1 from dividend 1990
\begin{array}{l}\phantom{488)}0\phantom{2}\\488\overline{)1990}\\\end{array}
Since 1 is less than 488, use the next digit 9 from dividend 1990 and add 0 to the quotient
\begin{array}{l}\phantom{488)}0\phantom{3}\\488\overline{)1990}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1990
\begin{array}{l}\phantom{488)}00\phantom{4}\\488\overline{)1990}\\\end{array}
Since 19 is less than 488, use the next digit 9 from dividend 1990 and add 0 to the quotient
\begin{array}{l}\phantom{488)}00\phantom{5}\\488\overline{)1990}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1990
\begin{array}{l}\phantom{488)}000\phantom{6}\\488\overline{)1990}\\\end{array}
Since 199 is less than 488, use the next digit 0 from dividend 1990 and add 0 to the quotient
\begin{array}{l}\phantom{488)}000\phantom{7}\\488\overline{)1990}\\\end{array}
Use the 4^{th} digit 0 from dividend 1990
\begin{array}{l}\phantom{488)}0004\phantom{8}\\488\overline{)1990}\\\phantom{488)}\underline{\phantom{}1952\phantom{}}\\\phantom{488)99}38\\\end{array}
Find closest multiple of 488 to 1990. We see that 4 \times 488 = 1952 is the nearest. Now subtract 1952 from 1990 to get reminder 38. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }38
Since 38 is less than 488, stop the division. The reminder is 38. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}