Evaluate
13
Factor
13
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)195}\\\end{array}
Use the 1^{st} digit 1 from dividend 195
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)195}\\\end{array}
Since 1 is less than 15, use the next digit 9 from dividend 195 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)195}\\\end{array}
Use the 2^{nd} digit 9 from dividend 195
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)195}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}4\\\end{array}
Find closest multiple of 15 to 19. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 19 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)195}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}45\\\end{array}
Use the 3^{rd} digit 5 from dividend 195
\begin{array}{l}\phantom{15)}013\phantom{6}\\15\overline{)195}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}45\\\phantom{15)}\underline{\phantom{9}45\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 45. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 45 to get reminder 0. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}