Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{1200)}\phantom{1}\\1200\overline{)19200}\\\end{array}
Use the 1^{st} digit 1 from dividend 19200
\begin{array}{l}\phantom{1200)}0\phantom{2}\\1200\overline{)19200}\\\end{array}
Since 1 is less than 1200, use the next digit 9 from dividend 19200 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}0\phantom{3}\\1200\overline{)19200}\\\end{array}
Use the 2^{nd} digit 9 from dividend 19200
\begin{array}{l}\phantom{1200)}00\phantom{4}\\1200\overline{)19200}\\\end{array}
Since 19 is less than 1200, use the next digit 2 from dividend 19200 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}00\phantom{5}\\1200\overline{)19200}\\\end{array}
Use the 3^{rd} digit 2 from dividend 19200
\begin{array}{l}\phantom{1200)}000\phantom{6}\\1200\overline{)19200}\\\end{array}
Since 192 is less than 1200, use the next digit 0 from dividend 19200 and add 0 to the quotient
\begin{array}{l}\phantom{1200)}000\phantom{7}\\1200\overline{)19200}\\\end{array}
Use the 4^{th} digit 0 from dividend 19200
\begin{array}{l}\phantom{1200)}0001\phantom{8}\\1200\overline{)19200}\\\phantom{1200)}\underline{\phantom{}1200\phantom{9}}\\\phantom{1200)9}720\\\end{array}
Find closest multiple of 1200 to 1920. We see that 1 \times 1200 = 1200 is the nearest. Now subtract 1200 from 1920 to get reminder 720. Add 1 to quotient.
\begin{array}{l}\phantom{1200)}0001\phantom{9}\\1200\overline{)19200}\\\phantom{1200)}\underline{\phantom{}1200\phantom{9}}\\\phantom{1200)9}7200\\\end{array}
Use the 5^{th} digit 0 from dividend 19200
\begin{array}{l}\phantom{1200)}00016\phantom{10}\\1200\overline{)19200}\\\phantom{1200)}\underline{\phantom{}1200\phantom{9}}\\\phantom{1200)9}7200\\\phantom{1200)}\underline{\phantom{9}7200\phantom{}}\\\phantom{1200)99999}0\\\end{array}
Find closest multiple of 1200 to 7200. We see that 6 \times 1200 = 7200 is the nearest. Now subtract 7200 from 7200 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 1200, stop the division. The reminder is 0. The topmost line 00016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}