Evaluate
\frac{192}{11}\approx 17.454545455
Factor
\frac{2 ^ {6} \cdot 3}{11} = 17\frac{5}{11} = 17.454545454545453
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)192}\\\end{array}
Use the 1^{st} digit 1 from dividend 192
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)192}\\\end{array}
Since 1 is less than 11, use the next digit 9 from dividend 192 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)192}\\\end{array}
Use the 2^{nd} digit 9 from dividend 192
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)192}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}8\\\end{array}
Find closest multiple of 11 to 19. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 19 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)192}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}82\\\end{array}
Use the 3^{rd} digit 2 from dividend 192
\begin{array}{l}\phantom{11)}017\phantom{6}\\11\overline{)192}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}82\\\phantom{11)}\underline{\phantom{9}77\phantom{}}\\\phantom{11)99}5\\\end{array}
Find closest multiple of 11 to 82. We see that 7 \times 11 = 77 is the nearest. Now subtract 77 from 82 to get reminder 5. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }5
Since 5 is less than 11, stop the division. The reminder is 5. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}