Evaluate
578
Factor
2\times 17^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{329)}\phantom{1}\\329\overline{)190162}\\\end{array}
Use the 1^{st} digit 1 from dividend 190162
\begin{array}{l}\phantom{329)}0\phantom{2}\\329\overline{)190162}\\\end{array}
Since 1 is less than 329, use the next digit 9 from dividend 190162 and add 0 to the quotient
\begin{array}{l}\phantom{329)}0\phantom{3}\\329\overline{)190162}\\\end{array}
Use the 2^{nd} digit 9 from dividend 190162
\begin{array}{l}\phantom{329)}00\phantom{4}\\329\overline{)190162}\\\end{array}
Since 19 is less than 329, use the next digit 0 from dividend 190162 and add 0 to the quotient
\begin{array}{l}\phantom{329)}00\phantom{5}\\329\overline{)190162}\\\end{array}
Use the 3^{rd} digit 0 from dividend 190162
\begin{array}{l}\phantom{329)}000\phantom{6}\\329\overline{)190162}\\\end{array}
Since 190 is less than 329, use the next digit 1 from dividend 190162 and add 0 to the quotient
\begin{array}{l}\phantom{329)}000\phantom{7}\\329\overline{)190162}\\\end{array}
Use the 4^{th} digit 1 from dividend 190162
\begin{array}{l}\phantom{329)}0005\phantom{8}\\329\overline{)190162}\\\phantom{329)}\underline{\phantom{}1645\phantom{99}}\\\phantom{329)9}256\\\end{array}
Find closest multiple of 329 to 1901. We see that 5 \times 329 = 1645 is the nearest. Now subtract 1645 from 1901 to get reminder 256. Add 5 to quotient.
\begin{array}{l}\phantom{329)}0005\phantom{9}\\329\overline{)190162}\\\phantom{329)}\underline{\phantom{}1645\phantom{99}}\\\phantom{329)9}2566\\\end{array}
Use the 5^{th} digit 6 from dividend 190162
\begin{array}{l}\phantom{329)}00057\phantom{10}\\329\overline{)190162}\\\phantom{329)}\underline{\phantom{}1645\phantom{99}}\\\phantom{329)9}2566\\\phantom{329)}\underline{\phantom{9}2303\phantom{9}}\\\phantom{329)99}263\\\end{array}
Find closest multiple of 329 to 2566. We see that 7 \times 329 = 2303 is the nearest. Now subtract 2303 from 2566 to get reminder 263. Add 7 to quotient.
\begin{array}{l}\phantom{329)}00057\phantom{11}\\329\overline{)190162}\\\phantom{329)}\underline{\phantom{}1645\phantom{99}}\\\phantom{329)9}2566\\\phantom{329)}\underline{\phantom{9}2303\phantom{9}}\\\phantom{329)99}2632\\\end{array}
Use the 6^{th} digit 2 from dividend 190162
\begin{array}{l}\phantom{329)}000578\phantom{12}\\329\overline{)190162}\\\phantom{329)}\underline{\phantom{}1645\phantom{99}}\\\phantom{329)9}2566\\\phantom{329)}\underline{\phantom{9}2303\phantom{9}}\\\phantom{329)99}2632\\\phantom{329)}\underline{\phantom{99}2632\phantom{}}\\\phantom{329)999999}0\\\end{array}
Find closest multiple of 329 to 2632. We see that 8 \times 329 = 2632 is the nearest. Now subtract 2632 from 2632 to get reminder 0. Add 8 to quotient.
\text{Quotient: }578 \text{Reminder: }0
Since 0 is less than 329, stop the division. The reminder is 0. The topmost line 000578 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 578.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}