Evaluate
\frac{m\left(218-6m-135m^{2}\right)}{11\left(14m-3\right)}
Expand
-\frac{135m^{3}+6m^{2}-218m}{11\left(14m-3\right)}
Share
Copied to clipboard
\frac{19m+3m^{3}}{14m-3}-\frac{12m^{2}+3m}{11}
Subtract 3 from 14 to get 11.
\frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)}-\frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14m-3 and 11 is 11\left(14m-3\right). Multiply \frac{19m+3m^{3}}{14m-3} times \frac{11}{11}. Multiply \frac{12m^{2}+3m}{11} times \frac{14m-3}{14m-3}.
\frac{11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
Since \frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)} and \frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m}{11\left(14m-3\right)}
Do the multiplications in 11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right).
\frac{218m-135m^{3}-6m^{2}}{11\left(14m-3\right)}
Combine like terms in 209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m.
\frac{218m-135m^{3}-6m^{2}}{154m-33}
Expand 11\left(14m-3\right).
\frac{19m+3m^{3}}{14m-3}-\frac{12m^{2}+3m}{11}
Subtract 3 from 14 to get 11.
\frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)}-\frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14m-3 and 11 is 11\left(14m-3\right). Multiply \frac{19m+3m^{3}}{14m-3} times \frac{11}{11}. Multiply \frac{12m^{2}+3m}{11} times \frac{14m-3}{14m-3}.
\frac{11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
Since \frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)} and \frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m}{11\left(14m-3\right)}
Do the multiplications in 11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right).
\frac{218m-135m^{3}-6m^{2}}{11\left(14m-3\right)}
Combine like terms in 209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m.
\frac{218m-135m^{3}-6m^{2}}{154m-33}
Expand 11\left(14m-3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}