Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{19m+3m^{3}}{14m-3}-\frac{12m^{2}+3m}{11}
Subtract 3 from 14 to get 11.
\frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)}-\frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14m-3 and 11 is 11\left(14m-3\right). Multiply \frac{19m+3m^{3}}{14m-3} times \frac{11}{11}. Multiply \frac{12m^{2}+3m}{11} times \frac{14m-3}{14m-3}.
\frac{11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
Since \frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)} and \frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m}{11\left(14m-3\right)}
Do the multiplications in 11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right).
\frac{218m-135m^{3}-6m^{2}}{11\left(14m-3\right)}
Combine like terms in 209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m.
\frac{218m-135m^{3}-6m^{2}}{154m-33}
Expand 11\left(14m-3\right).
\frac{19m+3m^{3}}{14m-3}-\frac{12m^{2}+3m}{11}
Subtract 3 from 14 to get 11.
\frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)}-\frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14m-3 and 11 is 11\left(14m-3\right). Multiply \frac{19m+3m^{3}}{14m-3} times \frac{11}{11}. Multiply \frac{12m^{2}+3m}{11} times \frac{14m-3}{14m-3}.
\frac{11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)}
Since \frac{11\left(19m+3m^{3}\right)}{11\left(14m-3\right)} and \frac{\left(12m^{2}+3m\right)\left(14m-3\right)}{11\left(14m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m}{11\left(14m-3\right)}
Do the multiplications in 11\left(19m+3m^{3}\right)-\left(12m^{2}+3m\right)\left(14m-3\right).
\frac{218m-135m^{3}-6m^{2}}{11\left(14m-3\right)}
Combine like terms in 209m+33m^{3}-168m^{3}+36m^{2}-42m^{2}+9m.
\frac{218m-135m^{3}-6m^{2}}{154m-33}
Expand 11\left(14m-3\right).