Solve for x
x=-\frac{17+5y-3y^{2}}{6\left(-y^{2}+3y-2\right)}
y\neq 1\text{ and }y\neq 2
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{\sqrt{36x^{2}+444x+229}-18x-5}{6\left(2x+1\right)}\text{; }y=\frac{\sqrt{36x^{2}+444x+229}+18x+5}{6\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\\y=\frac{23}{4}\text{, }&x=-\frac{1}{2}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{\sqrt{36x^{2}+444x+229}-18x-5}{6\left(2x+1\right)}\text{; }y=\frac{\sqrt{36x^{2}+444x+229}+18x+5}{6\left(2x+1\right)}\text{, }&x\leq -\frac{\sqrt{285}}{3}-\frac{37}{6}\text{ or }\left(x\neq -\frac{1}{2}\text{ and }x\geq \frac{\sqrt{285}}{3}-\frac{37}{6}\right)\\y=\frac{23}{4}\text{, }&x=-\frac{1}{2}\end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
\frac { 19 - 3 y ^ { 2 } + 3 y } { 2 y - 2 } - 3 x ( y - 2 ) = - 1
Share
Copied to clipboard
19-3y^{2}+3y-3x\left(y-2\right)\times 2\left(y-1\right)=-2\left(y-1\right)
Multiply both sides of the equation by 2\left(y-1\right).
19-3y^{2}+3y-6x\left(y-2\right)\left(y-1\right)=-2\left(y-1\right)
Multiply 3 and 2 to get 6.
19-3y^{2}+3y-6x\left(y-2\right)\left(y-1\right)=-2y+2
Use the distributive property to multiply -2 by y-1.
19-3y^{2}+3y+\left(-6xy+12x\right)\left(y-1\right)=-2y+2
Use the distributive property to multiply -6x by y-2.
19-3y^{2}+3y-6xy^{2}+18yx-12x=-2y+2
Use the distributive property to multiply -6xy+12x by y-1 and combine like terms.
-3y^{2}+3y-6xy^{2}+18yx-12x=-2y+2-19
Subtract 19 from both sides.
-3y^{2}+3y-6xy^{2}+18yx-12x=-2y-17
Subtract 19 from 2 to get -17.
3y-6xy^{2}+18yx-12x=-2y-17+3y^{2}
Add 3y^{2} to both sides.
-6xy^{2}+18yx-12x=-2y-17+3y^{2}-3y
Subtract 3y from both sides.
-6xy^{2}+18yx-12x=-5y-17+3y^{2}
Combine -2y and -3y to get -5y.
\left(-6y^{2}+18y-12\right)x=-5y-17+3y^{2}
Combine all terms containing x.
\left(-6y^{2}+18y-12\right)x=3y^{2}-5y-17
The equation is in standard form.
\frac{\left(-6y^{2}+18y-12\right)x}{-6y^{2}+18y-12}=\frac{3y^{2}-5y-17}{-6y^{2}+18y-12}
Divide both sides by -6y^{2}+18y-12.
x=\frac{3y^{2}-5y-17}{-6y^{2}+18y-12}
Dividing by -6y^{2}+18y-12 undoes the multiplication by -6y^{2}+18y-12.
x=\frac{3y^{2}-5y-17}{6\left(-y^{2}+3y-2\right)}
Divide -5y-17+3y^{2} by -6y^{2}+18y-12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}