Evaluate
\frac{223}{5\left(2a-9\right)}
Expand
\frac{223}{5\left(2a-9\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 19 ( \frac { 9 + 3 } { 5 } ) - 1 } { 2 ( a + 3 ) - 15 }
Share
Copied to clipboard
\frac{19\times \frac{12}{5}-1}{2\left(a+3\right)-15}
Add 9 and 3 to get 12.
\frac{\frac{19\times 12}{5}-1}{2\left(a+3\right)-15}
Express 19\times \frac{12}{5} as a single fraction.
\frac{\frac{228}{5}-1}{2\left(a+3\right)-15}
Multiply 19 and 12 to get 228.
\frac{\frac{228}{5}-\frac{5}{5}}{2\left(a+3\right)-15}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{228-5}{5}}{2\left(a+3\right)-15}
Since \frac{228}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{223}{5}}{2\left(a+3\right)-15}
Subtract 5 from 228 to get 223.
\frac{223}{5\left(2\left(a+3\right)-15\right)}
Express \frac{\frac{223}{5}}{2\left(a+3\right)-15} as a single fraction.
\frac{223}{5\left(2a+6-15\right)}
Use the distributive property to multiply 2 by a+3.
\frac{223}{5\left(2a-9\right)}
Subtract 15 from 6 to get -9.
\frac{223}{10a-45}
Use the distributive property to multiply 5 by 2a-9.
\frac{19\times \frac{12}{5}-1}{2\left(a+3\right)-15}
Add 9 and 3 to get 12.
\frac{\frac{19\times 12}{5}-1}{2\left(a+3\right)-15}
Express 19\times \frac{12}{5} as a single fraction.
\frac{\frac{228}{5}-1}{2\left(a+3\right)-15}
Multiply 19 and 12 to get 228.
\frac{\frac{228}{5}-\frac{5}{5}}{2\left(a+3\right)-15}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{228-5}{5}}{2\left(a+3\right)-15}
Since \frac{228}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{223}{5}}{2\left(a+3\right)-15}
Subtract 5 from 228 to get 223.
\frac{223}{5\left(2\left(a+3\right)-15\right)}
Express \frac{\frac{223}{5}}{2\left(a+3\right)-15} as a single fraction.
\frac{223}{5\left(2a+6-15\right)}
Use the distributive property to multiply 2 by a+3.
\frac{223}{5\left(2a-9\right)}
Subtract 15 from 6 to get -9.
\frac{223}{10a-45}
Use the distributive property to multiply 5 by 2a-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}