Verify
false
Share
Copied to clipboard
\frac{19}{35}-\frac{10}{35}=\frac{5}{21}+\frac{2}{3}
Least common multiple of 35 and 7 is 35. Convert \frac{19}{35} and \frac{2}{7} to fractions with denominator 35.
\frac{19-10}{35}=\frac{5}{21}+\frac{2}{3}
Since \frac{19}{35} and \frac{10}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{35}=\frac{5}{21}+\frac{2}{3}
Subtract 10 from 19 to get 9.
\frac{9}{35}=\frac{5}{21}+\frac{14}{21}
Least common multiple of 21 and 3 is 21. Convert \frac{5}{21} and \frac{2}{3} to fractions with denominator 21.
\frac{9}{35}=\frac{5+14}{21}
Since \frac{5}{21} and \frac{14}{21} have the same denominator, add them by adding their numerators.
\frac{9}{35}=\frac{19}{21}
Add 5 and 14 to get 19.
\frac{27}{105}=\frac{95}{105}
Least common multiple of 35 and 21 is 105. Convert \frac{9}{35} and \frac{19}{21} to fractions with denominator 105.
\text{false}
Compare \frac{27}{105} and \frac{95}{105}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}