Evaluate
\frac{187}{19}\approx 9.842105263
Factor
\frac{11 \cdot 17}{19} = 9\frac{16}{19} = 9.842105263157896
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)187}\\\end{array}
Use the 1^{st} digit 1 from dividend 187
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)187}\\\end{array}
Since 1 is less than 19, use the next digit 8 from dividend 187 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)187}\\\end{array}
Use the 2^{nd} digit 8 from dividend 187
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)187}\\\end{array}
Since 18 is less than 19, use the next digit 7 from dividend 187 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)187}\\\end{array}
Use the 3^{rd} digit 7 from dividend 187
\begin{array}{l}\phantom{19)}009\phantom{6}\\19\overline{)187}\\\phantom{19)}\underline{\phantom{}171\phantom{}}\\\phantom{19)9}16\\\end{array}
Find closest multiple of 19 to 187. We see that 9 \times 19 = 171 is the nearest. Now subtract 171 from 187 to get reminder 16. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }16
Since 16 is less than 19, stop the division. The reminder is 16. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}