Evaluate
\frac{183}{64}=2.859375
Factor
\frac{3 \cdot 61}{2 ^ {6}} = 2\frac{55}{64} = 2.859375
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)183}\\\end{array}
Use the 1^{st} digit 1 from dividend 183
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)183}\\\end{array}
Since 1 is less than 64, use the next digit 8 from dividend 183 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)183}\\\end{array}
Use the 2^{nd} digit 8 from dividend 183
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)183}\\\end{array}
Since 18 is less than 64, use the next digit 3 from dividend 183 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)183}\\\end{array}
Use the 3^{rd} digit 3 from dividend 183
\begin{array}{l}\phantom{64)}002\phantom{6}\\64\overline{)183}\\\phantom{64)}\underline{\phantom{}128\phantom{}}\\\phantom{64)9}55\\\end{array}
Find closest multiple of 64 to 183. We see that 2 \times 64 = 128 is the nearest. Now subtract 128 from 183 to get reminder 55. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }55
Since 55 is less than 64, stop the division. The reminder is 55. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}