Evaluate
\frac{91}{25}=3.64
Factor
\frac{7 \cdot 13}{5 ^ {2}} = 3\frac{16}{25} = 3.64
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)182}\\\end{array}
Use the 1^{st} digit 1 from dividend 182
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)182}\\\end{array}
Since 1 is less than 50, use the next digit 8 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)182}\\\end{array}
Use the 2^{nd} digit 8 from dividend 182
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)182}\\\end{array}
Since 18 is less than 50, use the next digit 2 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)182}\\\end{array}
Use the 3^{rd} digit 2 from dividend 182
\begin{array}{l}\phantom{50)}003\phantom{6}\\50\overline{)182}\\\phantom{50)}\underline{\phantom{}150\phantom{}}\\\phantom{50)9}32\\\end{array}
Find closest multiple of 50 to 182. We see that 3 \times 50 = 150 is the nearest. Now subtract 150 from 182 to get reminder 32. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }32
Since 32 is less than 50, stop the division. The reminder is 32. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}