Evaluate
\frac{1810473}{205000}\approx 8.83157561
Factor
\frac{3 \cdot 7 \cdot 73 \cdot 1181}{2 ^ {3} \cdot 5 ^ {4} \cdot 41} = 8\frac{170473}{205000} = 8.831575609756097
Share
Copied to clipboard
\begin{array}{l}\phantom{205000)}\phantom{1}\\205000\overline{)1810473}\\\end{array}
Use the 1^{st} digit 1 from dividend 1810473
\begin{array}{l}\phantom{205000)}0\phantom{2}\\205000\overline{)1810473}\\\end{array}
Since 1 is less than 205000, use the next digit 8 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}0\phantom{3}\\205000\overline{)1810473}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1810473
\begin{array}{l}\phantom{205000)}00\phantom{4}\\205000\overline{)1810473}\\\end{array}
Since 18 is less than 205000, use the next digit 1 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}00\phantom{5}\\205000\overline{)1810473}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1810473
\begin{array}{l}\phantom{205000)}000\phantom{6}\\205000\overline{)1810473}\\\end{array}
Since 181 is less than 205000, use the next digit 0 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}000\phantom{7}\\205000\overline{)1810473}\\\end{array}
Use the 4^{th} digit 0 from dividend 1810473
\begin{array}{l}\phantom{205000)}0000\phantom{8}\\205000\overline{)1810473}\\\end{array}
Since 1810 is less than 205000, use the next digit 4 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}0000\phantom{9}\\205000\overline{)1810473}\\\end{array}
Use the 5^{th} digit 4 from dividend 1810473
\begin{array}{l}\phantom{205000)}00000\phantom{10}\\205000\overline{)1810473}\\\end{array}
Since 18104 is less than 205000, use the next digit 7 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}00000\phantom{11}\\205000\overline{)1810473}\\\end{array}
Use the 6^{th} digit 7 from dividend 1810473
\begin{array}{l}\phantom{205000)}000000\phantom{12}\\205000\overline{)1810473}\\\end{array}
Since 181047 is less than 205000, use the next digit 3 from dividend 1810473 and add 0 to the quotient
\begin{array}{l}\phantom{205000)}000000\phantom{13}\\205000\overline{)1810473}\\\end{array}
Use the 7^{th} digit 3 from dividend 1810473
\begin{array}{l}\phantom{205000)}0000008\phantom{14}\\205000\overline{)1810473}\\\phantom{205000)}\underline{\phantom{}1640000\phantom{}}\\\phantom{205000)9}170473\\\end{array}
Find closest multiple of 205000 to 1810473. We see that 8 \times 205000 = 1640000 is the nearest. Now subtract 1640000 from 1810473 to get reminder 170473. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }170473
Since 170473 is less than 205000, stop the division. The reminder is 170473. The topmost line 0000008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}