Solve for x
x = \frac{\sqrt{649} - 23}{2} \approx 1.237739203
x=\frac{-\sqrt{649}-23}{2}\approx -24.237739203
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 180 } { 6 x } - \frac { 180 } { ( 6 + 2 x ) } = 3
Share
Copied to clipboard
\left(x+3\right)\times 180-3x\times 180=18x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 6x\left(x+3\right), the least common multiple of 6x,6+2x.
180x+540-3x\times 180=18x\left(x+3\right)
Use the distributive property to multiply x+3 by 180.
180x+540-540x=18x\left(x+3\right)
Multiply 3 and 180 to get 540.
180x+540-540x=18x^{2}+54x
Use the distributive property to multiply 18x by x+3.
180x+540-540x-18x^{2}=54x
Subtract 18x^{2} from both sides.
180x+540-540x-18x^{2}-54x=0
Subtract 54x from both sides.
126x+540-540x-18x^{2}=0
Combine 180x and -54x to get 126x.
-414x+540-18x^{2}=0
Combine 126x and -540x to get -414x.
-18x^{2}-414x+540=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-414\right)±\sqrt{\left(-414\right)^{2}-4\left(-18\right)\times 540}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, -414 for b, and 540 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-414\right)±\sqrt{171396-4\left(-18\right)\times 540}}{2\left(-18\right)}
Square -414.
x=\frac{-\left(-414\right)±\sqrt{171396+72\times 540}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-\left(-414\right)±\sqrt{171396+38880}}{2\left(-18\right)}
Multiply 72 times 540.
x=\frac{-\left(-414\right)±\sqrt{210276}}{2\left(-18\right)}
Add 171396 to 38880.
x=\frac{-\left(-414\right)±18\sqrt{649}}{2\left(-18\right)}
Take the square root of 210276.
x=\frac{414±18\sqrt{649}}{2\left(-18\right)}
The opposite of -414 is 414.
x=\frac{414±18\sqrt{649}}{-36}
Multiply 2 times -18.
x=\frac{18\sqrt{649}+414}{-36}
Now solve the equation x=\frac{414±18\sqrt{649}}{-36} when ± is plus. Add 414 to 18\sqrt{649}.
x=\frac{-\sqrt{649}-23}{2}
Divide 414+18\sqrt{649} by -36.
x=\frac{414-18\sqrt{649}}{-36}
Now solve the equation x=\frac{414±18\sqrt{649}}{-36} when ± is minus. Subtract 18\sqrt{649} from 414.
x=\frac{\sqrt{649}-23}{2}
Divide 414-18\sqrt{649} by -36.
x=\frac{-\sqrt{649}-23}{2} x=\frac{\sqrt{649}-23}{2}
The equation is now solved.
\left(x+3\right)\times 180-3x\times 180=18x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 6x\left(x+3\right), the least common multiple of 6x,6+2x.
180x+540-3x\times 180=18x\left(x+3\right)
Use the distributive property to multiply x+3 by 180.
180x+540-540x=18x\left(x+3\right)
Multiply 3 and 180 to get 540.
180x+540-540x=18x^{2}+54x
Use the distributive property to multiply 18x by x+3.
180x+540-540x-18x^{2}=54x
Subtract 18x^{2} from both sides.
180x+540-540x-18x^{2}-54x=0
Subtract 54x from both sides.
126x+540-540x-18x^{2}=0
Combine 180x and -54x to get 126x.
126x-540x-18x^{2}=-540
Subtract 540 from both sides. Anything subtracted from zero gives its negation.
-414x-18x^{2}=-540
Combine 126x and -540x to get -414x.
-18x^{2}-414x=-540
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-18x^{2}-414x}{-18}=-\frac{540}{-18}
Divide both sides by -18.
x^{2}+\left(-\frac{414}{-18}\right)x=-\frac{540}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}+23x=-\frac{540}{-18}
Divide -414 by -18.
x^{2}+23x=30
Divide -540 by -18.
x^{2}+23x+\left(\frac{23}{2}\right)^{2}=30+\left(\frac{23}{2}\right)^{2}
Divide 23, the coefficient of the x term, by 2 to get \frac{23}{2}. Then add the square of \frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+23x+\frac{529}{4}=30+\frac{529}{4}
Square \frac{23}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+23x+\frac{529}{4}=\frac{649}{4}
Add 30 to \frac{529}{4}.
\left(x+\frac{23}{2}\right)^{2}=\frac{649}{4}
Factor x^{2}+23x+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{2}\right)^{2}}=\sqrt{\frac{649}{4}}
Take the square root of both sides of the equation.
x+\frac{23}{2}=\frac{\sqrt{649}}{2} x+\frac{23}{2}=-\frac{\sqrt{649}}{2}
Simplify.
x=\frac{\sqrt{649}-23}{2} x=\frac{-\sqrt{649}-23}{2}
Subtract \frac{23}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}