Evaluate
-\frac{x^{2}}{3y^{6}}
Differentiate w.r.t. x
-\frac{2x}{3y^{6}}
Share
Copied to clipboard
\frac{18^{1}x^{5}y^{1}}{\left(-54\right)^{1}x^{3}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{18^{1}}{\left(-54\right)^{1}}x^{5-3}y^{1-7}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{18^{1}}{\left(-54\right)^{1}}x^{2}y^{1-7}
Subtract 3 from 5.
\frac{18^{1}}{\left(-54\right)^{1}}x^{2}y^{-6}
Subtract 7 from 1.
-\frac{1}{3}x^{2}\times \frac{1}{y^{6}}
Reduce the fraction \frac{18}{-54} to lowest terms by extracting and canceling out 18.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{18y}{-54y^{7}}x^{5-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{1}{3y^{6}}\right)x^{2})
Do the arithmetic.
2\left(-\frac{1}{3y^{6}}\right)x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{2}{3y^{6}}\right)x^{1}
Do the arithmetic.
\left(-\frac{2}{3y^{6}}\right)x
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}