Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{18^{1}x^{5}y^{1}}{\left(-54\right)^{1}x^{3}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{18^{1}}{\left(-54\right)^{1}}x^{5-3}y^{1-7}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{18^{1}}{\left(-54\right)^{1}}x^{2}y^{1-7}
Subtract 3 from 5.
\frac{18^{1}}{\left(-54\right)^{1}}x^{2}y^{-6}
Subtract 7 from 1.
-\frac{1}{3}x^{2}\times \frac{1}{y^{6}}
Reduce the fraction \frac{18}{-54} to lowest terms by extracting and canceling out 18.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{18y}{-54y^{7}}x^{5-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{1}{3y^{6}}\right)x^{2})
Do the arithmetic.
2\left(-\frac{1}{3y^{6}}\right)x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{2}{3y^{6}}\right)x^{1}
Do the arithmetic.
\left(-\frac{2}{3y^{6}}\right)x
For any term t, t^{1}=t.