Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}+\frac{1-i}{-2+3i}
Multiply both numerator and denominator of \frac{18i}{2-3i} by the complex conjugate of the denominator, 2+3i.
\frac{-54+36i}{13}+\frac{1-i}{-2+3i}
Do the multiplications in \frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
-\frac{54}{13}+\frac{36}{13}i+\frac{1-i}{-2+3i}
Divide -54+36i by 13 to get -\frac{54}{13}+\frac{36}{13}i.
-\frac{54}{13}+\frac{36}{13}i+\frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}
Multiply both numerator and denominator of \frac{1-i}{-2+3i} by the complex conjugate of the denominator, -2-3i.
-\frac{54}{13}+\frac{36}{13}i+\frac{-5-i}{13}
Do the multiplications in \frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}.
-\frac{54}{13}+\frac{36}{13}i+\left(-\frac{5}{13}-\frac{1}{13}i\right)
Divide -5-i by 13 to get -\frac{5}{13}-\frac{1}{13}i.
-\frac{59}{13}+\frac{35}{13}i
Add -\frac{54}{13}+\frac{36}{13}i and -\frac{5}{13}-\frac{1}{13}i to get -\frac{59}{13}+\frac{35}{13}i.
Re(\frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}+\frac{1-i}{-2+3i})
Multiply both numerator and denominator of \frac{18i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{-54+36i}{13}+\frac{1-i}{-2+3i})
Do the multiplications in \frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{1-i}{-2+3i})
Divide -54+36i by 13 to get -\frac{54}{13}+\frac{36}{13}i.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)})
Multiply both numerator and denominator of \frac{1-i}{-2+3i} by the complex conjugate of the denominator, -2-3i.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{-5-i}{13})
Do the multiplications in \frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}.
Re(-\frac{54}{13}+\frac{36}{13}i+\left(-\frac{5}{13}-\frac{1}{13}i\right))
Divide -5-i by 13 to get -\frac{5}{13}-\frac{1}{13}i.
Re(-\frac{59}{13}+\frac{35}{13}i)
Add -\frac{54}{13}+\frac{36}{13}i and -\frac{5}{13}-\frac{1}{13}i to get -\frac{59}{13}+\frac{35}{13}i.
-\frac{59}{13}
The real part of -\frac{59}{13}+\frac{35}{13}i is -\frac{59}{13}.