Evaluate
-\frac{59}{13}+\frac{35}{13}i\approx -4.538461538+2.692307692i
Real Part
-\frac{59}{13} = -4\frac{7}{13} = -4.538461538461538
Share
Copied to clipboard
\frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}+\frac{1-i}{-2+3i}
Multiply both numerator and denominator of \frac{18i}{2-3i} by the complex conjugate of the denominator, 2+3i.
\frac{-54+36i}{13}+\frac{1-i}{-2+3i}
Do the multiplications in \frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
-\frac{54}{13}+\frac{36}{13}i+\frac{1-i}{-2+3i}
Divide -54+36i by 13 to get -\frac{54}{13}+\frac{36}{13}i.
-\frac{54}{13}+\frac{36}{13}i+\frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}
Multiply both numerator and denominator of \frac{1-i}{-2+3i} by the complex conjugate of the denominator, -2-3i.
-\frac{54}{13}+\frac{36}{13}i+\frac{-5-i}{13}
Do the multiplications in \frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}.
-\frac{54}{13}+\frac{36}{13}i+\left(-\frac{5}{13}-\frac{1}{13}i\right)
Divide -5-i by 13 to get -\frac{5}{13}-\frac{1}{13}i.
-\frac{59}{13}+\frac{35}{13}i
Add -\frac{54}{13}+\frac{36}{13}i and -\frac{5}{13}-\frac{1}{13}i to get -\frac{59}{13}+\frac{35}{13}i.
Re(\frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}+\frac{1-i}{-2+3i})
Multiply both numerator and denominator of \frac{18i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{-54+36i}{13}+\frac{1-i}{-2+3i})
Do the multiplications in \frac{18i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{1-i}{-2+3i})
Divide -54+36i by 13 to get -\frac{54}{13}+\frac{36}{13}i.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)})
Multiply both numerator and denominator of \frac{1-i}{-2+3i} by the complex conjugate of the denominator, -2-3i.
Re(-\frac{54}{13}+\frac{36}{13}i+\frac{-5-i}{13})
Do the multiplications in \frac{\left(1-i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}.
Re(-\frac{54}{13}+\frac{36}{13}i+\left(-\frac{5}{13}-\frac{1}{13}i\right))
Divide -5-i by 13 to get -\frac{5}{13}-\frac{1}{13}i.
Re(-\frac{59}{13}+\frac{35}{13}i)
Add -\frac{54}{13}+\frac{36}{13}i and -\frac{5}{13}-\frac{1}{13}i to get -\frac{59}{13}+\frac{35}{13}i.
-\frac{59}{13}
The real part of -\frac{59}{13}+\frac{35}{13}i is -\frac{59}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}