Solve for a
a\neq 0
z = \frac{1}{10} = 0.1
Solve for z
z = \frac{1}{10} = 0.1
a\neq 0
Share
Copied to clipboard
a\times 18=z\times 10\times 18a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by az, the least common multiple of z,a.
a\times 18=z\times 180a
Multiply 10 and 18 to get 180.
a\times 18-z\times 180a=0
Subtract z\times 180a from both sides.
a\times 18-180za=0
Multiply -1 and 180 to get -180.
\left(18-180z\right)a=0
Combine all terms containing a.
a=0
Divide 0 by 18-180z.
a\in \emptyset
Variable a cannot be equal to 0.
a\times 18=z\times 10\times 18a
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by az, the least common multiple of z,a.
a\times 18=z\times 180a
Multiply 10 and 18 to get 180.
z\times 180a=a\times 18
Swap sides so that all variable terms are on the left hand side.
180az=18a
The equation is in standard form.
\frac{180az}{180a}=\frac{18a}{180a}
Divide both sides by 180a.
z=\frac{18a}{180a}
Dividing by 180a undoes the multiplication by 180a.
z=\frac{1}{10}
Divide 18a by 180a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}