Solve for x
x=6
x=-6
Graph
Share
Copied to clipboard
4\times 18=x\times 2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of x,4.
72=x\times 2x
Multiply 4 and 18 to get 72.
72=x^{2}\times 2
Multiply x and x to get x^{2}.
x^{2}\times 2=72
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{72}{2}
Divide both sides by 2.
x^{2}=36
Divide 72 by 2 to get 36.
x=6 x=-6
Take the square root of both sides of the equation.
4\times 18=x\times 2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of x,4.
72=x\times 2x
Multiply 4 and 18 to get 72.
72=x^{2}\times 2
Multiply x and x to get x^{2}.
x^{2}\times 2=72
Swap sides so that all variable terms are on the left hand side.
x^{2}\times 2-72=0
Subtract 72 from both sides.
2x^{2}-72=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-72\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-72\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-72\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{576}}{2\times 2}
Multiply -8 times -72.
x=\frac{0±24}{2\times 2}
Take the square root of 576.
x=\frac{0±24}{4}
Multiply 2 times 2.
x=6
Now solve the equation x=\frac{0±24}{4} when ± is plus. Divide 24 by 4.
x=-6
Now solve the equation x=\frac{0±24}{4} when ± is minus. Divide -24 by 4.
x=6 x=-6
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}