Solve for k
k = -\frac{9}{5} = -1\frac{4}{5} = -1.8
k=2
Share
Copied to clipboard
18=k^{2}\times 5-k
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k^{2}, the least common multiple of k^{2},k.
k^{2}\times 5-k=18
Swap sides so that all variable terms are on the left hand side.
k^{2}\times 5-k-18=0
Subtract 18 from both sides.
5k^{2}-k-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-1\right)±\sqrt{1-4\times 5\left(-18\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -1 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-1\right)±\sqrt{1-20\left(-18\right)}}{2\times 5}
Multiply -4 times 5.
k=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 5}
Multiply -20 times -18.
k=\frac{-\left(-1\right)±\sqrt{361}}{2\times 5}
Add 1 to 360.
k=\frac{-\left(-1\right)±19}{2\times 5}
Take the square root of 361.
k=\frac{1±19}{2\times 5}
The opposite of -1 is 1.
k=\frac{1±19}{10}
Multiply 2 times 5.
k=\frac{20}{10}
Now solve the equation k=\frac{1±19}{10} when ± is plus. Add 1 to 19.
k=2
Divide 20 by 10.
k=-\frac{18}{10}
Now solve the equation k=\frac{1±19}{10} when ± is minus. Subtract 19 from 1.
k=-\frac{9}{5}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
k=2 k=-\frac{9}{5}
The equation is now solved.
18=k^{2}\times 5-k
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k^{2}, the least common multiple of k^{2},k.
k^{2}\times 5-k=18
Swap sides so that all variable terms are on the left hand side.
5k^{2}-k=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5k^{2}-k}{5}=\frac{18}{5}
Divide both sides by 5.
k^{2}-\frac{1}{5}k=\frac{18}{5}
Dividing by 5 undoes the multiplication by 5.
k^{2}-\frac{1}{5}k+\left(-\frac{1}{10}\right)^{2}=\frac{18}{5}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{1}{5}k+\frac{1}{100}=\frac{18}{5}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{1}{5}k+\frac{1}{100}=\frac{361}{100}
Add \frac{18}{5} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k-\frac{1}{10}\right)^{2}=\frac{361}{100}
Factor k^{2}-\frac{1}{5}k+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{1}{10}\right)^{2}}=\sqrt{\frac{361}{100}}
Take the square root of both sides of the equation.
k-\frac{1}{10}=\frac{19}{10} k-\frac{1}{10}=-\frac{19}{10}
Simplify.
k=2 k=-\frac{9}{5}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}