Solve for n
n=245
Share
Copied to clipboard
\frac{130+n}{45}=30\times \frac{5}{18}
Multiply both sides by \frac{5}{18}, the reciprocal of \frac{18}{5}.
\frac{130+n}{45}=\frac{30\times 5}{18}
Express 30\times \frac{5}{18} as a single fraction.
\frac{130+n}{45}=\frac{150}{18}
Multiply 30 and 5 to get 150.
\frac{130+n}{45}=\frac{25}{3}
Reduce the fraction \frac{150}{18} to lowest terms by extracting and canceling out 6.
130+n=\frac{25}{3}\times 45
Multiply both sides by 45.
130+n=\frac{25\times 45}{3}
Express \frac{25}{3}\times 45 as a single fraction.
130+n=\frac{1125}{3}
Multiply 25 and 45 to get 1125.
130+n=375
Divide 1125 by 3 to get 375.
n=375-130
Subtract 130 from both sides.
n=245
Subtract 130 from 375 to get 245.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}