Solve for t
t = -\frac{280}{129} = -2\frac{22}{129} \approx -2.170542636
Share
Copied to clipboard
10\times \frac{18+8t}{\frac{5}{8}}=8-t
Multiply both sides of the equation by 10.
10\left(\frac{18}{\frac{5}{8}}+\frac{8t}{\frac{5}{8}}\right)=8-t
Divide each term of 18+8t by \frac{5}{8} to get \frac{18}{\frac{5}{8}}+\frac{8t}{\frac{5}{8}}.
10\left(18\times \frac{8}{5}+\frac{8t}{\frac{5}{8}}\right)=8-t
Divide 18 by \frac{5}{8} by multiplying 18 by the reciprocal of \frac{5}{8}.
10\left(\frac{18\times 8}{5}+\frac{8t}{\frac{5}{8}}\right)=8-t
Express 18\times \frac{8}{5} as a single fraction.
10\left(\frac{144}{5}+\frac{8t}{\frac{5}{8}}\right)=8-t
Multiply 18 and 8 to get 144.
10\left(\frac{144}{5}+\frac{64}{5}t\right)=8-t
Divide 8t by \frac{5}{8} to get \frac{64}{5}t.
10\times \frac{144}{5}+10\times \frac{64}{5}t=8-t
Use the distributive property to multiply 10 by \frac{144}{5}+\frac{64}{5}t.
\frac{10\times 144}{5}+10\times \frac{64}{5}t=8-t
Express 10\times \frac{144}{5} as a single fraction.
\frac{1440}{5}+10\times \frac{64}{5}t=8-t
Multiply 10 and 144 to get 1440.
288+10\times \frac{64}{5}t=8-t
Divide 1440 by 5 to get 288.
288+\frac{10\times 64}{5}t=8-t
Express 10\times \frac{64}{5} as a single fraction.
288+\frac{640}{5}t=8-t
Multiply 10 and 64 to get 640.
288+128t=8-t
Divide 640 by 5 to get 128.
288+128t+t=8
Add t to both sides.
288+129t=8
Combine 128t and t to get 129t.
129t=8-288
Subtract 288 from both sides.
129t=-280
Subtract 288 from 8 to get -280.
t=\frac{-280}{129}
Divide both sides by 129.
t=-\frac{280}{129}
Fraction \frac{-280}{129} can be rewritten as -\frac{280}{129} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}