Evaluate
\frac{891089}{505}\approx 1764.532673267
Factor
\frac{17 \cdot 23 \cdot 43 \cdot 53}{5 \cdot 101} = 1764\frac{269}{505} = 1764.5326732673268
Share
Copied to clipboard
\begin{array}{l}\phantom{1010)}\phantom{1}\\1010\overline{)1782178}\\\end{array}
Use the 1^{st} digit 1 from dividend 1782178
\begin{array}{l}\phantom{1010)}0\phantom{2}\\1010\overline{)1782178}\\\end{array}
Since 1 is less than 1010, use the next digit 7 from dividend 1782178 and add 0 to the quotient
\begin{array}{l}\phantom{1010)}0\phantom{3}\\1010\overline{)1782178}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1782178
\begin{array}{l}\phantom{1010)}00\phantom{4}\\1010\overline{)1782178}\\\end{array}
Since 17 is less than 1010, use the next digit 8 from dividend 1782178 and add 0 to the quotient
\begin{array}{l}\phantom{1010)}00\phantom{5}\\1010\overline{)1782178}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1782178
\begin{array}{l}\phantom{1010)}000\phantom{6}\\1010\overline{)1782178}\\\end{array}
Since 178 is less than 1010, use the next digit 2 from dividend 1782178 and add 0 to the quotient
\begin{array}{l}\phantom{1010)}000\phantom{7}\\1010\overline{)1782178}\\\end{array}
Use the 4^{th} digit 2 from dividend 1782178
\begin{array}{l}\phantom{1010)}0001\phantom{8}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}772\\\end{array}
Find closest multiple of 1010 to 1782. We see that 1 \times 1010 = 1010 is the nearest. Now subtract 1010 from 1782 to get reminder 772. Add 1 to quotient.
\begin{array}{l}\phantom{1010)}0001\phantom{9}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\end{array}
Use the 5^{th} digit 1 from dividend 1782178
\begin{array}{l}\phantom{1010)}00017\phantom{10}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\phantom{1010)}\underline{\phantom{9}7070\phantom{99}}\\\phantom{1010)99}651\\\end{array}
Find closest multiple of 1010 to 7721. We see that 7 \times 1010 = 7070 is the nearest. Now subtract 7070 from 7721 to get reminder 651. Add 7 to quotient.
\begin{array}{l}\phantom{1010)}00017\phantom{11}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\phantom{1010)}\underline{\phantom{9}7070\phantom{99}}\\\phantom{1010)99}6517\\\end{array}
Use the 6^{th} digit 7 from dividend 1782178
\begin{array}{l}\phantom{1010)}000176\phantom{12}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\phantom{1010)}\underline{\phantom{9}7070\phantom{99}}\\\phantom{1010)99}6517\\\phantom{1010)}\underline{\phantom{99}6060\phantom{9}}\\\phantom{1010)999}457\\\end{array}
Find closest multiple of 1010 to 6517. We see that 6 \times 1010 = 6060 is the nearest. Now subtract 6060 from 6517 to get reminder 457. Add 6 to quotient.
\begin{array}{l}\phantom{1010)}000176\phantom{13}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\phantom{1010)}\underline{\phantom{9}7070\phantom{99}}\\\phantom{1010)99}6517\\\phantom{1010)}\underline{\phantom{99}6060\phantom{9}}\\\phantom{1010)999}4578\\\end{array}
Use the 7^{th} digit 8 from dividend 1782178
\begin{array}{l}\phantom{1010)}0001764\phantom{14}\\1010\overline{)1782178}\\\phantom{1010)}\underline{\phantom{}1010\phantom{999}}\\\phantom{1010)9}7721\\\phantom{1010)}\underline{\phantom{9}7070\phantom{99}}\\\phantom{1010)99}6517\\\phantom{1010)}\underline{\phantom{99}6060\phantom{9}}\\\phantom{1010)999}4578\\\phantom{1010)}\underline{\phantom{999}4040\phantom{}}\\\phantom{1010)9999}538\\\end{array}
Find closest multiple of 1010 to 4578. We see that 4 \times 1010 = 4040 is the nearest. Now subtract 4040 from 4578 to get reminder 538. Add 4 to quotient.
\text{Quotient: }1764 \text{Reminder: }538
Since 538 is less than 1010, stop the division. The reminder is 538. The topmost line 0001764 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1764.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}