Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)176}\\\end{array}
Use the 1^{st} digit 1 from dividend 176
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)176}\\\end{array}
Since 1 is less than 11, use the next digit 7 from dividend 176 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)176}\\\end{array}
Use the 2^{nd} digit 7 from dividend 176
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)176}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}6\\\end{array}
Find closest multiple of 11 to 17. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 17 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)176}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}66\\\end{array}
Use the 3^{rd} digit 6 from dividend 176
\begin{array}{l}\phantom{11)}016\phantom{6}\\11\overline{)176}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}66\\\phantom{11)}\underline{\phantom{9}66\phantom{}}\\\phantom{11)999}0\\\end{array}
Find closest multiple of 11 to 66. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 66 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 11, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}