Evaluate
\frac{349}{200}=1.745
Factor
\frac{349}{2 ^ {3} \cdot 5 ^ {2}} = 1\frac{149}{200} = 1.745
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)1745}\\\end{array}
Use the 1^{st} digit 1 from dividend 1745
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)1745}\\\end{array}
Since 1 is less than 1000, use the next digit 7 from dividend 1745 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)1745}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1745
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)1745}\\\end{array}
Since 17 is less than 1000, use the next digit 4 from dividend 1745 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)1745}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1745
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)1745}\\\end{array}
Since 174 is less than 1000, use the next digit 5 from dividend 1745 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)1745}\\\end{array}
Use the 4^{th} digit 5 from dividend 1745
\begin{array}{l}\phantom{1000)}0001\phantom{8}\\1000\overline{)1745}\\\phantom{1000)}\underline{\phantom{}1000\phantom{}}\\\phantom{1000)9}745\\\end{array}
Find closest multiple of 1000 to 1745. We see that 1 \times 1000 = 1000 is the nearest. Now subtract 1000 from 1745 to get reminder 745. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }745
Since 745 is less than 1000, stop the division. The reminder is 745. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}