Evaluate
\frac{86}{9}\approx 9.555555556
Factor
\frac{2 \cdot 43}{3 ^ {2}} = 9\frac{5}{9} = 9.555555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)172}\\\end{array}
Use the 1^{st} digit 1 from dividend 172
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)172}\\\end{array}
Since 1 is less than 18, use the next digit 7 from dividend 172 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)172}\\\end{array}
Use the 2^{nd} digit 7 from dividend 172
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)172}\\\end{array}
Since 17 is less than 18, use the next digit 2 from dividend 172 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)172}\\\end{array}
Use the 3^{rd} digit 2 from dividend 172
\begin{array}{l}\phantom{18)}009\phantom{6}\\18\overline{)172}\\\phantom{18)}\underline{\phantom{}162\phantom{}}\\\phantom{18)9}10\\\end{array}
Find closest multiple of 18 to 172. We see that 9 \times 18 = 162 is the nearest. Now subtract 162 from 172 to get reminder 10. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }10
Since 10 is less than 18, stop the division. The reminder is 10. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}