Evaluate
\frac{171}{167}\approx 1.023952096
Factor
\frac{3 ^ {2} \cdot 19}{167} = 1\frac{4}{167} = 1.0239520958083832
Share
Copied to clipboard
\begin{array}{l}\phantom{167)}\phantom{1}\\167\overline{)171}\\\end{array}
Use the 1^{st} digit 1 from dividend 171
\begin{array}{l}\phantom{167)}0\phantom{2}\\167\overline{)171}\\\end{array}
Since 1 is less than 167, use the next digit 7 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{167)}0\phantom{3}\\167\overline{)171}\\\end{array}
Use the 2^{nd} digit 7 from dividend 171
\begin{array}{l}\phantom{167)}00\phantom{4}\\167\overline{)171}\\\end{array}
Since 17 is less than 167, use the next digit 1 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{167)}00\phantom{5}\\167\overline{)171}\\\end{array}
Use the 3^{rd} digit 1 from dividend 171
\begin{array}{l}\phantom{167)}001\phantom{6}\\167\overline{)171}\\\phantom{167)}\underline{\phantom{}167\phantom{}}\\\phantom{167)99}4\\\end{array}
Find closest multiple of 167 to 171. We see that 1 \times 167 = 167 is the nearest. Now subtract 167 from 171 to get reminder 4. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }4
Since 4 is less than 167, stop the division. The reminder is 4. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}