Evaluate
\frac{173\sqrt{2}}{10}\approx 24.465894629
Share
Copied to clipboard
\frac{17.3}{\sqrt{\frac{4.9}{9.8}}}
Multiply 2 and 2.45 to get 4.9.
\frac{17.3}{\sqrt{\frac{49}{98}}}
Expand \frac{4.9}{9.8} by multiplying both numerator and the denominator by 10.
\frac{17.3}{\sqrt{\frac{1}{2}}}
Reduce the fraction \frac{49}{98} to lowest terms by extracting and canceling out 49.
\frac{17.3}{\frac{\sqrt{1}}{\sqrt{2}}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{17.3}{\frac{1}{\sqrt{2}}}
Calculate the square root of 1 and get 1.
\frac{17.3}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{17.3}{\frac{\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{17.3\times 2}{\sqrt{2}}
Divide 17.3 by \frac{\sqrt{2}}{2} by multiplying 17.3 by the reciprocal of \frac{\sqrt{2}}{2}.
\frac{17.3\times 2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{17.3\times 2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{17.3\times 2\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{34.6\sqrt{2}}{2}
Multiply 17.3 and 2 to get 34.6.
17.3\sqrt{2}
Divide 34.6\sqrt{2} by 2 to get 17.3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}