Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{17.15}{2\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{5}-\sqrt{3}.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{2^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{4\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{4\times 5-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{20-\left(\sqrt{3}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{20-3}
The square of \sqrt{3} is 3.
\frac{17.15\left(2\sqrt{5}-\sqrt{3}\right)}{17}
Subtract 3 from 20 to get 17.
\frac{343}{340}\left(2\sqrt{5}-\sqrt{3}\right)
Divide 17.15\left(2\sqrt{5}-\sqrt{3}\right) by 17 to get \frac{343}{340}\left(2\sqrt{5}-\sqrt{3}\right).
\frac{343}{170}\sqrt{5}-\frac{343}{340}\sqrt{3}
Use the distributive property to multiply \frac{343}{340} by 2\sqrt{5}-\sqrt{3}.