Solve for x (complex solution)
x=-\frac{\sqrt{15}i}{2}\approx -0-1.936491673i
x=\frac{\sqrt{15}i}{2}\approx 1.936491673i
Graph
Share
Copied to clipboard
8\left(17x-34x^{2}\right)+72\left(\frac{1}{2}-2x\right)^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 72, the least common multiple of 9,24,2.
136x-272x^{2}+72\left(\frac{1}{2}-2x\right)^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 8 by 17x-34x^{2}.
136x-272x^{2}+72\left(\frac{1}{4}-2x+4x^{2}\right)-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-2x\right)^{2}.
136x-272x^{2}+18-144x+288x^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 72 by \frac{1}{4}-2x+4x^{2}.
-8x-272x^{2}+18+288x^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Combine 136x and -144x to get -8x.
-8x+16x^{2}+18-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Combine -272x^{2} and 288x^{2} to get 16x^{2}.
-8x+16x^{2}+15=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Subtract 3 from 18 to get 15.
-8x+16x^{2}+15=72x^{3}-36x^{2}-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 72x^{2} by x-\frac{1}{2}.
-8x+16x^{2}+15=72x^{3}-36x^{2}-72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
-8x+16x^{2}+15+72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)=72x^{3}-36x^{2}
Add 72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right) to both sides.
-8x+16x^{2}+15+72x^{3}-48x^{2}+8x=72x^{3}-36x^{2}
Use the distributive property to multiply 72x by x^{2}-\frac{2}{3}x+\frac{1}{9}.
-8x-32x^{2}+15+72x^{3}+8x=72x^{3}-36x^{2}
Combine 16x^{2} and -48x^{2} to get -32x^{2}.
-32x^{2}+15+72x^{3}=72x^{3}-36x^{2}
Combine -8x and 8x to get 0.
-32x^{2}+15+72x^{3}-72x^{3}=-36x^{2}
Subtract 72x^{3} from both sides.
-32x^{2}+15=-36x^{2}
Combine 72x^{3} and -72x^{3} to get 0.
-32x^{2}+15+36x^{2}=0
Add 36x^{2} to both sides.
4x^{2}+15=0
Combine -32x^{2} and 36x^{2} to get 4x^{2}.
4x^{2}=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{15}{4}
Divide both sides by 4.
x=\frac{\sqrt{15}i}{2} x=-\frac{\sqrt{15}i}{2}
The equation is now solved.
8\left(17x-34x^{2}\right)+72\left(\frac{1}{2}-2x\right)^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 72, the least common multiple of 9,24,2.
136x-272x^{2}+72\left(\frac{1}{2}-2x\right)^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 8 by 17x-34x^{2}.
136x-272x^{2}+72\left(\frac{1}{4}-2x+4x^{2}\right)-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-2x\right)^{2}.
136x-272x^{2}+18-144x+288x^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 72 by \frac{1}{4}-2x+4x^{2}.
-8x-272x^{2}+18+288x^{2}-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Combine 136x and -144x to get -8x.
-8x+16x^{2}+18-3=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Combine -272x^{2} and 288x^{2} to get 16x^{2}.
-8x+16x^{2}+15=72x^{2}\left(x-\frac{1}{2}\right)-72x\left(x-\frac{1}{3}\right)^{2}
Subtract 3 from 18 to get 15.
-8x+16x^{2}+15=72x^{3}-36x^{2}-72x\left(x-\frac{1}{3}\right)^{2}
Use the distributive property to multiply 72x^{2} by x-\frac{1}{2}.
-8x+16x^{2}+15=72x^{3}-36x^{2}-72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
-8x+16x^{2}+15+72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)=72x^{3}-36x^{2}
Add 72x\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right) to both sides.
-8x+16x^{2}+15+72x^{3}-48x^{2}+8x=72x^{3}-36x^{2}
Use the distributive property to multiply 72x by x^{2}-\frac{2}{3}x+\frac{1}{9}.
-8x-32x^{2}+15+72x^{3}+8x=72x^{3}-36x^{2}
Combine 16x^{2} and -48x^{2} to get -32x^{2}.
-32x^{2}+15+72x^{3}=72x^{3}-36x^{2}
Combine -8x and 8x to get 0.
-32x^{2}+15+72x^{3}-72x^{3}=-36x^{2}
Subtract 72x^{3} from both sides.
-32x^{2}+15=-36x^{2}
Combine 72x^{3} and -72x^{3} to get 0.
-32x^{2}+15+36x^{2}=0
Add 36x^{2} to both sides.
4x^{2}+15=0
Combine -32x^{2} and 36x^{2} to get 4x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 4\times 15}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\times 15}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\times 15}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{-240}}{2\times 4}
Multiply -16 times 15.
x=\frac{0±4\sqrt{15}i}{2\times 4}
Take the square root of -240.
x=\frac{0±4\sqrt{15}i}{8}
Multiply 2 times 4.
x=\frac{\sqrt{15}i}{2}
Now solve the equation x=\frac{0±4\sqrt{15}i}{8} when ± is plus.
x=-\frac{\sqrt{15}i}{2}
Now solve the equation x=\frac{0±4\sqrt{15}i}{8} when ± is minus.
x=\frac{\sqrt{15}i}{2} x=-\frac{\sqrt{15}i}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}