Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4}{2-i}
Subtract 21 from 17 to get -4.
\frac{-4\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{-4\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4\times 2-4i}{5}
Multiply -4 times 2+i.
\frac{-8-4i}{5}
Do the multiplications in -4\times 2-4i.
-\frac{8}{5}-\frac{4}{5}i
Divide -8-4i by 5 to get -\frac{8}{5}-\frac{4}{5}i.
Re(\frac{-4}{2-i})
Subtract 21 from 17 to get -4.
Re(\frac{-4\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{-4}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{-4\left(2+i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-4\left(2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4\times 2-4i}{5})
Multiply -4 times 2+i.
Re(\frac{-8-4i}{5})
Do the multiplications in -4\times 2-4i.
Re(-\frac{8}{5}-\frac{4}{5}i)
Divide -8-4i by 5 to get -\frac{8}{5}-\frac{4}{5}i.
-\frac{8}{5}
The real part of -\frac{8}{5}-\frac{4}{5}i is -\frac{8}{5}.