Evaluate
-\frac{19750}{1729}\approx -11.422787739
Factor
-\frac{19750}{1729} = -11\frac{731}{1729} = -11.422787738577211
Share
Copied to clipboard
\frac{\frac{17}{7}}{-\frac{19}{91}}-\left(-\frac{1919}{9191}\right)
Reduce the fraction \frac{191919}{919191} to lowest terms by extracting and canceling out 10101.
\frac{17}{7}\left(-\frac{91}{19}\right)-\left(-\frac{1919}{9191}\right)
Divide \frac{17}{7} by -\frac{19}{91} by multiplying \frac{17}{7} by the reciprocal of -\frac{19}{91}.
\frac{17\left(-91\right)}{7\times 19}-\left(-\frac{1919}{9191}\right)
Multiply \frac{17}{7} times -\frac{91}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{-1547}{133}-\left(-\frac{1919}{9191}\right)
Do the multiplications in the fraction \frac{17\left(-91\right)}{7\times 19}.
-\frac{221}{19}-\left(-\frac{1919}{9191}\right)
Reduce the fraction \frac{-1547}{133} to lowest terms by extracting and canceling out 7.
-\frac{221}{19}-\left(-\frac{19}{91}\right)
Reduce the fraction \frac{1919}{9191} to lowest terms by extracting and canceling out 101.
-\frac{221}{19}+\frac{19}{91}
The opposite of -\frac{19}{91} is \frac{19}{91}.
-\frac{20111}{1729}+\frac{361}{1729}
Least common multiple of 19 and 91 is 1729. Convert -\frac{221}{19} and \frac{19}{91} to fractions with denominator 1729.
\frac{-20111+361}{1729}
Since -\frac{20111}{1729} and \frac{361}{1729} have the same denominator, add them by adding their numerators.
-\frac{19750}{1729}
Add -20111 and 361 to get -19750.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}