Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{17\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}
Rationalize the denominator of \frac{17}{2\sqrt{3}+1} by multiplying numerator and denominator by 2\sqrt{3}-1.
\frac{17\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}\right)^{2}-1^{2}}
Consider \left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{17\left(2\sqrt{3}-1\right)}{2^{2}\left(\sqrt{3}\right)^{2}-1^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{17\left(2\sqrt{3}-1\right)}{4\left(\sqrt{3}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{17\left(2\sqrt{3}-1\right)}{4\times 3-1^{2}}
The square of \sqrt{3} is 3.
\frac{17\left(2\sqrt{3}-1\right)}{12-1^{2}}
Multiply 4 and 3 to get 12.
\frac{17\left(2\sqrt{3}-1\right)}{12-1}
Calculate 1 to the power of 2 and get 1.
\frac{17\left(2\sqrt{3}-1\right)}{11}
Subtract 1 from 12 to get 11.
\frac{34\sqrt{3}-17}{11}
Use the distributive property to multiply 17 by 2\sqrt{3}-1.