Solve for x
x = \frac{\sqrt{645} + 30}{17} \approx 3.258638247
x=\frac{30-\sqrt{645}}{17}\approx 0.270773518
Graph
Share
Copied to clipboard
\frac{17}{15}x^{2}-4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{17}{15}}}{2\times \frac{17}{15}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{15} for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{17}{15}}}{2\times \frac{17}{15}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{68}{15}}}{2\times \frac{17}{15}}
Multiply -4 times \frac{17}{15}.
x=\frac{-\left(-4\right)±\sqrt{\frac{172}{15}}}{2\times \frac{17}{15}}
Add 16 to -\frac{68}{15}.
x=\frac{-\left(-4\right)±\frac{2\sqrt{645}}{15}}{2\times \frac{17}{15}}
Take the square root of \frac{172}{15}.
x=\frac{4±\frac{2\sqrt{645}}{15}}{2\times \frac{17}{15}}
The opposite of -4 is 4.
x=\frac{4±\frac{2\sqrt{645}}{15}}{\frac{34}{15}}
Multiply 2 times \frac{17}{15}.
x=\frac{\frac{2\sqrt{645}}{15}+4}{\frac{34}{15}}
Now solve the equation x=\frac{4±\frac{2\sqrt{645}}{15}}{\frac{34}{15}} when ± is plus. Add 4 to \frac{2\sqrt{645}}{15}.
x=\frac{\sqrt{645}+30}{17}
Divide 4+\frac{2\sqrt{645}}{15} by \frac{34}{15} by multiplying 4+\frac{2\sqrt{645}}{15} by the reciprocal of \frac{34}{15}.
x=\frac{-\frac{2\sqrt{645}}{15}+4}{\frac{34}{15}}
Now solve the equation x=\frac{4±\frac{2\sqrt{645}}{15}}{\frac{34}{15}} when ± is minus. Subtract \frac{2\sqrt{645}}{15} from 4.
x=\frac{30-\sqrt{645}}{17}
Divide 4-\frac{2\sqrt{645}}{15} by \frac{34}{15} by multiplying 4-\frac{2\sqrt{645}}{15} by the reciprocal of \frac{34}{15}.
x=\frac{\sqrt{645}+30}{17} x=\frac{30-\sqrt{645}}{17}
The equation is now solved.
\frac{17}{15}x^{2}-4x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{17}{15}x^{2}-4x+1-1=-1
Subtract 1 from both sides of the equation.
\frac{17}{15}x^{2}-4x=-1
Subtracting 1 from itself leaves 0.
\frac{\frac{17}{15}x^{2}-4x}{\frac{17}{15}}=-\frac{1}{\frac{17}{15}}
Divide both sides of the equation by \frac{17}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4}{\frac{17}{15}}\right)x=-\frac{1}{\frac{17}{15}}
Dividing by \frac{17}{15} undoes the multiplication by \frac{17}{15}.
x^{2}-\frac{60}{17}x=-\frac{1}{\frac{17}{15}}
Divide -4 by \frac{17}{15} by multiplying -4 by the reciprocal of \frac{17}{15}.
x^{2}-\frac{60}{17}x=-\frac{15}{17}
Divide -1 by \frac{17}{15} by multiplying -1 by the reciprocal of \frac{17}{15}.
x^{2}-\frac{60}{17}x+\left(-\frac{30}{17}\right)^{2}=-\frac{15}{17}+\left(-\frac{30}{17}\right)^{2}
Divide -\frac{60}{17}, the coefficient of the x term, by 2 to get -\frac{30}{17}. Then add the square of -\frac{30}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{60}{17}x+\frac{900}{289}=-\frac{15}{17}+\frac{900}{289}
Square -\frac{30}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{60}{17}x+\frac{900}{289}=\frac{645}{289}
Add -\frac{15}{17} to \frac{900}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{30}{17}\right)^{2}=\frac{645}{289}
Factor x^{2}-\frac{60}{17}x+\frac{900}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{30}{17}\right)^{2}}=\sqrt{\frac{645}{289}}
Take the square root of both sides of the equation.
x-\frac{30}{17}=\frac{\sqrt{645}}{17} x-\frac{30}{17}=-\frac{\sqrt{645}}{17}
Simplify.
x=\frac{\sqrt{645}+30}{17} x=\frac{30-\sqrt{645}}{17}
Add \frac{30}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}