Evaluate
\frac{17}{15}\approx 1.133333333
Factor
\frac{17}{3 \cdot 5} = 1\frac{2}{15} = 1.1333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)17}\\\end{array}
Use the 1^{st} digit 1 from dividend 17
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)17}\\\end{array}
Since 1 is less than 15, use the next digit 7 from dividend 17 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)17}\\\end{array}
Use the 2^{nd} digit 7 from dividend 17
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)17}\\\phantom{15)}\underline{\phantom{}15\phantom{}}\\\phantom{15)9}2\\\end{array}
Find closest multiple of 15 to 17. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 17 to get reminder 2. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2
Since 2 is less than 15, stop the division. The reminder is 2. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}