Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)168}\\\end{array}
Since 1 is less than 28, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{28)}00\phantom{4}\\28\overline{)168}\\\end{array}
Since 16 is less than 28, use the next digit 8 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{28)}00\phantom{5}\\28\overline{)168}\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{28)}006\phantom{6}\\28\overline{)168}\\\phantom{28)}\underline{\phantom{}168\phantom{}}\\\phantom{28)999}0\\\end{array}
Find closest multiple of 28 to 168. We see that 6 \times 28 = 168 is the nearest. Now subtract 168 from 168 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 28, stop the division. The reminder is 0. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}