Solve for x
x=26
x=-\frac{8}{13}\approx -0.615384615
Graph
Share
Copied to clipboard
\left(x-4\right)\times 165+\left(x+4\right)\times 165=13\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
165x-660+\left(x+4\right)\times 165=13\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 165.
165x-660+165x+660=13\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 165.
330x-660+660=13\left(x-4\right)\left(x+4\right)
Combine 165x and 165x to get 330x.
330x=13\left(x-4\right)\left(x+4\right)
Add -660 and 660 to get 0.
330x=\left(13x-52\right)\left(x+4\right)
Use the distributive property to multiply 13 by x-4.
330x=13x^{2}-208
Use the distributive property to multiply 13x-52 by x+4 and combine like terms.
330x-13x^{2}=-208
Subtract 13x^{2} from both sides.
330x-13x^{2}+208=0
Add 208 to both sides.
-13x^{2}+330x+208=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-330±\sqrt{330^{2}-4\left(-13\right)\times 208}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, 330 for b, and 208 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-330±\sqrt{108900-4\left(-13\right)\times 208}}{2\left(-13\right)}
Square 330.
x=\frac{-330±\sqrt{108900+52\times 208}}{2\left(-13\right)}
Multiply -4 times -13.
x=\frac{-330±\sqrt{108900+10816}}{2\left(-13\right)}
Multiply 52 times 208.
x=\frac{-330±\sqrt{119716}}{2\left(-13\right)}
Add 108900 to 10816.
x=\frac{-330±346}{2\left(-13\right)}
Take the square root of 119716.
x=\frac{-330±346}{-26}
Multiply 2 times -13.
x=\frac{16}{-26}
Now solve the equation x=\frac{-330±346}{-26} when ± is plus. Add -330 to 346.
x=-\frac{8}{13}
Reduce the fraction \frac{16}{-26} to lowest terms by extracting and canceling out 2.
x=-\frac{676}{-26}
Now solve the equation x=\frac{-330±346}{-26} when ± is minus. Subtract 346 from -330.
x=26
Divide -676 by -26.
x=-\frac{8}{13} x=26
The equation is now solved.
\left(x-4\right)\times 165+\left(x+4\right)\times 165=13\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
165x-660+\left(x+4\right)\times 165=13\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 165.
165x-660+165x+660=13\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 165.
330x-660+660=13\left(x-4\right)\left(x+4\right)
Combine 165x and 165x to get 330x.
330x=13\left(x-4\right)\left(x+4\right)
Add -660 and 660 to get 0.
330x=\left(13x-52\right)\left(x+4\right)
Use the distributive property to multiply 13 by x-4.
330x=13x^{2}-208
Use the distributive property to multiply 13x-52 by x+4 and combine like terms.
330x-13x^{2}=-208
Subtract 13x^{2} from both sides.
-13x^{2}+330x=-208
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-13x^{2}+330x}{-13}=-\frac{208}{-13}
Divide both sides by -13.
x^{2}+\frac{330}{-13}x=-\frac{208}{-13}
Dividing by -13 undoes the multiplication by -13.
x^{2}-\frac{330}{13}x=-\frac{208}{-13}
Divide 330 by -13.
x^{2}-\frac{330}{13}x=16
Divide -208 by -13.
x^{2}-\frac{330}{13}x+\left(-\frac{165}{13}\right)^{2}=16+\left(-\frac{165}{13}\right)^{2}
Divide -\frac{330}{13}, the coefficient of the x term, by 2 to get -\frac{165}{13}. Then add the square of -\frac{165}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{330}{13}x+\frac{27225}{169}=16+\frac{27225}{169}
Square -\frac{165}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{330}{13}x+\frac{27225}{169}=\frac{29929}{169}
Add 16 to \frac{27225}{169}.
\left(x-\frac{165}{13}\right)^{2}=\frac{29929}{169}
Factor x^{2}-\frac{330}{13}x+\frac{27225}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{165}{13}\right)^{2}}=\sqrt{\frac{29929}{169}}
Take the square root of both sides of the equation.
x-\frac{165}{13}=\frac{173}{13} x-\frac{165}{13}=-\frac{173}{13}
Simplify.
x=26 x=-\frac{8}{13}
Add \frac{165}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}