Evaluate
\frac{33}{29}\approx 1.137931034
Factor
\frac{3 \cdot 11}{29} = 1\frac{4}{29} = 1.1379310344827587
Share
Copied to clipboard
\begin{array}{l}\phantom{145)}\phantom{1}\\145\overline{)165}\\\end{array}
Use the 1^{st} digit 1 from dividend 165
\begin{array}{l}\phantom{145)}0\phantom{2}\\145\overline{)165}\\\end{array}
Since 1 is less than 145, use the next digit 6 from dividend 165 and add 0 to the quotient
\begin{array}{l}\phantom{145)}0\phantom{3}\\145\overline{)165}\\\end{array}
Use the 2^{nd} digit 6 from dividend 165
\begin{array}{l}\phantom{145)}00\phantom{4}\\145\overline{)165}\\\end{array}
Since 16 is less than 145, use the next digit 5 from dividend 165 and add 0 to the quotient
\begin{array}{l}\phantom{145)}00\phantom{5}\\145\overline{)165}\\\end{array}
Use the 3^{rd} digit 5 from dividend 165
\begin{array}{l}\phantom{145)}001\phantom{6}\\145\overline{)165}\\\phantom{145)}\underline{\phantom{}145\phantom{}}\\\phantom{145)9}20\\\end{array}
Find closest multiple of 145 to 165. We see that 1 \times 145 = 145 is the nearest. Now subtract 145 from 165 to get reminder 20. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }20
Since 20 is less than 145, stop the division. The reminder is 20. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}