Solve for x
x=150
Graph
Share
Copied to clipboard
\frac{160\left(x-30\right)}{x\times 160}=\frac{4}{5}
Variable x cannot be equal to 30 since division by zero is not defined. Divide \frac{160}{x} by \frac{160}{x-30} by multiplying \frac{160}{x} by the reciprocal of \frac{160}{x-30}.
\frac{x-30}{x}=\frac{4}{5}
Cancel out 160 in both numerator and denominator.
5\left(x-30\right)=4x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
5x-150=4x
Use the distributive property to multiply 5 by x-30.
5x-150-4x=0
Subtract 4x from both sides.
x-150=0
Combine 5x and -4x to get x.
x=150
Add 150 to both sides. Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}