Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-10\right)\times 160+x\left(x-10\right)\times 5=x\left(160+x+60\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x,x-10.
160x-1600+x\left(x-10\right)\times 5=x\left(160+x+60\right)
Use the distributive property to multiply x-10 by 160.
160x-1600+\left(x^{2}-10x\right)\times 5=x\left(160+x+60\right)
Use the distributive property to multiply x by x-10.
160x-1600+5x^{2}-50x=x\left(160+x+60\right)
Use the distributive property to multiply x^{2}-10x by 5.
110x-1600+5x^{2}=x\left(160+x+60\right)
Combine 160x and -50x to get 110x.
110x-1600+5x^{2}=x\left(220+x\right)
Add 160 and 60 to get 220.
110x-1600+5x^{2}=220x+x^{2}
Use the distributive property to multiply x by 220+x.
110x-1600+5x^{2}-220x=x^{2}
Subtract 220x from both sides.
-110x-1600+5x^{2}=x^{2}
Combine 110x and -220x to get -110x.
-110x-1600+5x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-110x-1600+4x^{2}=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-110x-1600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-110\right)±\sqrt{\left(-110\right)^{2}-4\times 4\left(-1600\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -110 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-110\right)±\sqrt{12100-4\times 4\left(-1600\right)}}{2\times 4}
Square -110.
x=\frac{-\left(-110\right)±\sqrt{12100-16\left(-1600\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-110\right)±\sqrt{12100+25600}}{2\times 4}
Multiply -16 times -1600.
x=\frac{-\left(-110\right)±\sqrt{37700}}{2\times 4}
Add 12100 to 25600.
x=\frac{-\left(-110\right)±10\sqrt{377}}{2\times 4}
Take the square root of 37700.
x=\frac{110±10\sqrt{377}}{2\times 4}
The opposite of -110 is 110.
x=\frac{110±10\sqrt{377}}{8}
Multiply 2 times 4.
x=\frac{10\sqrt{377}+110}{8}
Now solve the equation x=\frac{110±10\sqrt{377}}{8} when ± is plus. Add 110 to 10\sqrt{377}.
x=\frac{5\sqrt{377}+55}{4}
Divide 110+10\sqrt{377} by 8.
x=\frac{110-10\sqrt{377}}{8}
Now solve the equation x=\frac{110±10\sqrt{377}}{8} when ± is minus. Subtract 10\sqrt{377} from 110.
x=\frac{55-5\sqrt{377}}{4}
Divide 110-10\sqrt{377} by 8.
x=\frac{5\sqrt{377}+55}{4} x=\frac{55-5\sqrt{377}}{4}
The equation is now solved.
\left(x-10\right)\times 160+x\left(x-10\right)\times 5=x\left(160+x+60\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x,x-10.
160x-1600+x\left(x-10\right)\times 5=x\left(160+x+60\right)
Use the distributive property to multiply x-10 by 160.
160x-1600+\left(x^{2}-10x\right)\times 5=x\left(160+x+60\right)
Use the distributive property to multiply x by x-10.
160x-1600+5x^{2}-50x=x\left(160+x+60\right)
Use the distributive property to multiply x^{2}-10x by 5.
110x-1600+5x^{2}=x\left(160+x+60\right)
Combine 160x and -50x to get 110x.
110x-1600+5x^{2}=x\left(220+x\right)
Add 160 and 60 to get 220.
110x-1600+5x^{2}=220x+x^{2}
Use the distributive property to multiply x by 220+x.
110x-1600+5x^{2}-220x=x^{2}
Subtract 220x from both sides.
-110x-1600+5x^{2}=x^{2}
Combine 110x and -220x to get -110x.
-110x-1600+5x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-110x-1600+4x^{2}=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
-110x+4x^{2}=1600
Add 1600 to both sides. Anything plus zero gives itself.
4x^{2}-110x=1600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-110x}{4}=\frac{1600}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{110}{4}\right)x=\frac{1600}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{55}{2}x=\frac{1600}{4}
Reduce the fraction \frac{-110}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{55}{2}x=400
Divide 1600 by 4.
x^{2}-\frac{55}{2}x+\left(-\frac{55}{4}\right)^{2}=400+\left(-\frac{55}{4}\right)^{2}
Divide -\frac{55}{2}, the coefficient of the x term, by 2 to get -\frac{55}{4}. Then add the square of -\frac{55}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=400+\frac{3025}{16}
Square -\frac{55}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=\frac{9425}{16}
Add 400 to \frac{3025}{16}.
\left(x-\frac{55}{4}\right)^{2}=\frac{9425}{16}
Factor x^{2}-\frac{55}{2}x+\frac{3025}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{4}\right)^{2}}=\sqrt{\frac{9425}{16}}
Take the square root of both sides of the equation.
x-\frac{55}{4}=\frac{5\sqrt{377}}{4} x-\frac{55}{4}=-\frac{5\sqrt{377}}{4}
Simplify.
x=\frac{5\sqrt{377}+55}{4} x=\frac{55-5\sqrt{377}}{4}
Add \frac{55}{4} to both sides of the equation.