Solve for x
x=2
Graph
Share
Copied to clipboard
\left(2x+3\right)\left(16x^{2}-20x+9\right)=\left(8x^{2}+12x+21\right)\left(4x-5\right)
Variable x cannot be equal to -\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+3\right)\left(8x^{2}+12x+21\right), the least common multiple of 8x^{2}+12x+21,2x+3.
32x^{3}+8x^{2}-42x+27=\left(8x^{2}+12x+21\right)\left(4x-5\right)
Use the distributive property to multiply 2x+3 by 16x^{2}-20x+9 and combine like terms.
32x^{3}+8x^{2}-42x+27=32x^{3}+8x^{2}+24x-105
Use the distributive property to multiply 8x^{2}+12x+21 by 4x-5 and combine like terms.
32x^{3}+8x^{2}-42x+27-32x^{3}=8x^{2}+24x-105
Subtract 32x^{3} from both sides.
8x^{2}-42x+27=8x^{2}+24x-105
Combine 32x^{3} and -32x^{3} to get 0.
8x^{2}-42x+27-8x^{2}=24x-105
Subtract 8x^{2} from both sides.
-42x+27=24x-105
Combine 8x^{2} and -8x^{2} to get 0.
-42x+27-24x=-105
Subtract 24x from both sides.
-66x+27=-105
Combine -42x and -24x to get -66x.
-66x=-105-27
Subtract 27 from both sides.
-66x=-132
Subtract 27 from -105 to get -132.
x=\frac{-132}{-66}
Divide both sides by -66.
x=2
Divide -132 by -66 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}