Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{16\left(x+1\right)}{4\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Factor the expressions that are not already factored in \frac{16x+16}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{4\left(2x+9\right)}{4\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{8x+36}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x+9}{\left(x-3\right)\left(x+3\right)}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)-\left(2x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-2x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 4\left(x+1\right)-\left(2x+9\right).
\frac{2x-5}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 4x+4-2x-9.
\frac{2x-5}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
\frac{16\left(x+1\right)}{4\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Factor the expressions that are not already factored in \frac{16x+16}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{4\left(2x+9\right)}{4\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{8x+36}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x+9}{\left(x-3\right)\left(x+3\right)}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)-\left(2x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-2x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 4\left(x+1\right)-\left(2x+9\right).
\frac{2x-5}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 4x+4-2x-9.
\frac{2x-5}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).