Evaluate
\frac{2x-5}{x^{2}-9}
Expand
\frac{2x-5}{x^{2}-9}
Graph
Share
Copied to clipboard
\frac{16\left(x+1\right)}{4\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Factor the expressions that are not already factored in \frac{16x+16}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{4\left(2x+9\right)}{4\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{8x+36}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x+9}{\left(x-3\right)\left(x+3\right)}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)-\left(2x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-2x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 4\left(x+1\right)-\left(2x+9\right).
\frac{2x-5}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 4x+4-2x-9.
\frac{2x-5}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
\frac{16\left(x+1\right)}{4\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Factor the expressions that are not already factored in \frac{16x+16}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{8x+36}{4x^{2}-36}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{4\left(2x+9\right)}{4\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{8x+36}{4x^{2}-36}.
\frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x+9}{\left(x-3\right)\left(x+3\right)}
Cancel out 4 in both numerator and denominator.
\frac{4\left(x+1\right)-\left(2x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{4\left(x+1\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-2x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 4\left(x+1\right)-\left(2x+9\right).
\frac{2x-5}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 4x+4-2x-9.
\frac{2x-5}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}