Evaluate
\frac{5c}{3}
Expand
\frac{5c}{3}
Share
Copied to clipboard
\frac{4a}{-3}\times \frac{-5ac}{\left(-2a\right)^{2}}
Cancel out 4b in both numerator and denominator.
\frac{4a}{-3}\times \frac{-5ac}{\left(-2\right)^{2}a^{2}}
Expand \left(-2a\right)^{2}.
\frac{4a}{-3}\times \frac{-5ac}{4a^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{4a}{-3}\times \frac{-5c}{4a}
Cancel out a in both numerator and denominator.
\frac{4a\left(-5\right)c}{-3\times 4a}
Multiply \frac{4a}{-3} times \frac{-5c}{4a} by multiplying numerator times numerator and denominator times denominator.
\frac{-5c}{-3}
Cancel out 4a in both numerator and denominator.
\frac{4a}{-3}\times \frac{-5ac}{\left(-2a\right)^{2}}
Cancel out 4b in both numerator and denominator.
\frac{4a}{-3}\times \frac{-5ac}{\left(-2\right)^{2}a^{2}}
Expand \left(-2a\right)^{2}.
\frac{4a}{-3}\times \frac{-5ac}{4a^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{4a}{-3}\times \frac{-5c}{4a}
Cancel out a in both numerator and denominator.
\frac{4a\left(-5\right)c}{-3\times 4a}
Multiply \frac{4a}{-3} times \frac{-5c}{4a} by multiplying numerator times numerator and denominator times denominator.
\frac{-5c}{-3}
Cancel out 4a in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}